home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_3 / 3-1-1.tut < prev    next >
Unknown  |  1996-07-15  |  5.2 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | e1 13 00 00 ba 00 00 00 |TUTOR 06|........|
|00000010| 43 68 61 70 74 65 72 20 | 33 20 20 5a 65 72 6f 73 |Chapter |3 Zeros|
|00000020| 20 6f 66 20 50 6f 6c 79 | 6e 6f 6d 69 61 6c 20 46 | of Poly|nomial F|
|00000030| 75 6e 63 74 69 6f 6e 73 | 0d 0a 00 0d 0b 00 16 33 |unctions|.......3|
|00000040| 2d 69 6e 64 65 78 16 14 | 63 68 61 70 34 2e 68 69 |-index..|chap4.hi|
|00000050| 14 30 14 31 14 37 38 14 | 31 38 14 0d 0a 00 0d 0b |.0.1.78.|18......|
|00000060| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000070| 20 20 20 20 10 33 2d 70 | 72 65 0e 70 72 65 69 6e | .3-p|re.prein|
|00000080| 74 72 6f 2d 33 0e 43 68 | 61 70 74 65 72 20 57 61 |tro-3.Ch|apter Wa|
|00000090| 72 6d 20 75 70 0f 0d 0a | 00 0d 0b 00 20 20 20 20 |rm up...|.... |
|000000a0| 20 20 0e 73 33 2d 31 0e | 53 65 63 74 69 6f 6e 20 | .s3-1.|Section |
|000000b0| 33 2e 31 0f 20 20 51 75 | 61 64 72 61 74 69 63 20 |3.1. Qu|adratic |
|000000c0| 46 75 6e 63 74 69 6f 6e | 73 0d 0a 00 0d 0b 00 20 |Function|s...... |
|000000d0| 20 20 20 20 20 10 33 2d | 32 2d 31 0e 73 33 2d 32 | .3-|2-1.s3-2|
|000000e0| 0e 53 65 63 74 69 6f 6e | 20 33 2e 32 0f 20 20 50 |.Section| 3.2. P|
|000000f0| 6f 6c 79 6e 6f 6d 69 61 | 6c 20 46 75 6e 63 74 69 |olynomia|l Functi|
|00000100| 6f 6e 73 20 6f 66 20 48 | 69 67 68 65 72 20 44 65 |ons of H|igher De|
|00000110| 67 72 65 65 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |gree....|.. |
|00000120| 10 33 2d 33 2d 31 0e 73 | 33 2d 33 0e 53 65 63 74 |.3-3-1.s|3-3.Sect|
|00000130| 69 6f 6e 20 33 2e 33 0f | 20 20 50 6f 6c 79 6e 6f |ion 3.3.| Polyno|
|00000140| 6d 69 61 6c 20 61 6e 64 | 20 53 79 6e 74 68 65 74 |mial and| Synthet|
|00000150| 69 63 20 44 69 76 69 73 | 69 6f 6e 0d 0a 00 0d 0b |ic Divis|ion.....|
|00000160| 00 20 20 20 20 20 20 10 | 33 2d 34 2d 31 0e 73 33 |. .|3-4-1.s3|
|00000170| 2d 34 0e 53 65 63 74 69 | 6f 6e 20 33 2e 34 0f 20 |-4.Secti|on 3.4. |
|00000180| 20 52 65 61 6c 20 5a 65 | 72 6f 73 20 6f 66 20 50 | Real Ze|ros of P|
|00000190| 6f 6c 79 6e 6f 6d 69 61 | 6c 20 46 75 6e 63 74 69 |olynomia|l Functi|
|000001a0| 6f 6e 73 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 10 |ons.....|. .|
|000001b0| 33 2d 35 2d 31 0e 73 33 | 2d 35 0e 53 65 63 74 69 |3-5-1.s3|-5.Secti|
|000001c0| 6f 6e 20 33 2e 35 0f 20 | 20 54 68 65 20 46 75 6e |on 3.5. | The Fun|
|000001d0| 64 61 6d 65 6e 74 61 6c | 20 54 68 65 6f 72 65 6d |damental| Theorem|
|000001e0| 20 6f 66 20 41 6c 67 65 | 62 72 61 0d 0a 00 0d 0b | of Alge|bra.....|
|000001f0| 00 20 20 20 20 20 20 10 | 33 2d 36 2d 31 0e 73 33 |. .|3-6-1.s3|
|00000200| 2d 36 0e 53 65 63 74 69 | 6f 6e 20 33 2e 36 0f 20 |-6.Secti|on 3.6. |
|00000210| 20 4d 61 74 68 65 6d 61 | 74 69 63 61 6c 20 4d 6f | Mathema|tical Mo|
|00000220| 64 65 6c 69 6e 67 0d 0a | 00 0d 0b 00 20 20 20 20 |deling..|.... |
|00000230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 10 | | .|
|00000240| 33 2d 70 6f 73 74 0e 70 | 6f 73 74 69 6e 74 72 6f |3-post.p|ostintro|
|00000250| 2d 33 0e 43 68 61 70 74 | 65 72 20 50 6f 73 74 2d |-3.Chapt|er Post-|
|00000260| 74 65 73 74 0f 0d 0a 00 | 53 65 63 74 69 6f 6e 20 |test....|Section |
|00000270| 33 2e 31 20 20 51 75 61 | 64 72 61 74 69 63 20 46 |3.1 Qua|dratic F|
|00000280| 75 6e 63 74 69 6f 6e 73 | 0d 0b 00 46 6f 72 20 6d |unctions|...For m|
|00000290| 6f 72 65 20 70 72 61 63 | 74 69 63 65 3a 0d 0a 00 |ore prac|tice:...|
|000002a0| 0d 0a 00 20 20 20 20 20 | 10 33 2d 31 2d 33 0e 78 |... |.3-1-3.x|
|000002b0| 33 2d 31 0e 45 78 65 72 | 63 69 73 65 73 0f 0d 0a |3-1.Exer|cises...|
|000002c0| 00 20 20 20 20 20 10 33 | 2d 31 2d 32 0e 65 33 2d |. .3|-1-2.e3-|
|000002d0| 31 0e 47 75 69 64 65 64 | 20 45 78 65 72 63 69 73 |1.Guided| Exercis|
|000002e0| 65 73 0f 0d 0a 00 0d 0a | 00 54 6f 70 69 63 73 20 |es......|.Topics |
|000002f0| 66 6f 72 20 65 78 70 6c | 6f 72 61 74 69 6f 6e 3a |for expl|oration:|
|00000300| 0d 0a 00 0d 0a 00 20 20 | 20 20 20 0e 73 33 2d 31 |...... | .s3-1|
|00000310| 2d 31 0e 44 65 66 69 6e | 69 74 69 6f 6e 20 6f 66 |-1.Defin|ition of|
|00000320| 20 61 20 50 6f 6c 79 6e | 6f 6d 69 61 6c 20 46 75 | a Polyn|omial Fu|
|00000330| 6e 63 74 69 6f 6e 0f 0d | 0a 00 20 20 20 20 20 0e |nction..|.. .|
|00000340| 73 33 2d 31 2d 32 0e 44 | 65 66 69 6e 69 74 69 6f |s3-1-2.D|efinitio|
|00000350| 6e 20 6f 66 20 61 20 51 | 75 61 64 72 61 74 69 63 |n of a Q|uadratic|
|00000360| 20 46 75 6e 63 74 69 6f | 6e 0f 0d 0a 00 20 20 20 | Functio|n.... |
|00000370| 20 20 0e 73 33 2d 31 2d | 33 0e 53 6b 65 74 63 68 | .s3-1-|3.Sketch|
|00000380| 69 6e 67 20 74 68 65 20 | 47 72 61 70 68 20 6f 66 |ing the |Graph of|
|00000390| 20 61 20 51 75 61 64 72 | 61 74 69 63 20 46 75 6e | a Quadr|atic Fun|
|000003a0| 63 74 69 6f 6e 0f 0d 0a | 00 20 20 20 20 20 0e 73 |ction...|. .s|
|000003b0| 33 2d 31 2d 34 0e 53 74 | 61 6e 64 61 72 64 20 46 |3-1-4.St|andard F|
|000003c0| 6f 72 6d 20 6f 66 20 61 | 20 51 75 61 64 72 61 74 |orm of a| Quadrat|
|000003d0| 69 63 20 46 75 6e 63 74 | 69 6f 6e 0f 0d 0a 00 20 |ic Funct|ion.... |
|000003e0| 20 20 20 20 0e 73 33 2d | 31 2d 35 0e 4d 61 78 69 | .s3-|1-5.Maxi|
|000003f0| 6d 75 6d 20 6f 72 20 4d | 69 6e 69 6d 75 6d 20 56 |mum or M|inimum V|
|00000400| 61 6c 75 65 73 20 6f 66 | 20 61 20 51 75 61 64 72 |alues of| a Quadr|
|00000410| 61 74 69 63 20 46 75 6e | 63 74 69 6f 6e 0f 0d 0a |atic Fun|ction...|
|00000420| 00 53 65 63 74 69 6f 6e | 20 33 2e 31 20 20 51 75 |.Section| 3.1 Qu|
|00000430| 61 64 72 61 74 69 63 20 | 46 75 6e 63 74 69 6f 6e |adratic |Function|
|00000440| 73 0d 0b 00 4c 65 74 20 | 11 33 6e 20 11 31 62 65 |s...Let |.3n .1be|
|00000450| 20 61 20 6e 6f 6e 6e 65 | 67 61 74 69 76 65 20 69 | a nonne|gative i|
|00000460| 6e 74 65 67 65 72 20 61 | 6e 64 20 6c 65 74 20 11 |nteger a|nd let .|
|00000470| 33 61 20 2c 20 61 20 20 | 20 2c 20 2e 2e 2e 2c 20 |3a , a | , ..., |
|00000480| 61 20 2c 20 61 20 20 11 | 31 62 65 20 72 65 61 6c |a , a .|1be real|
|00000490| 20 6e 75 6d 62 65 72 73 | 20 0d 0b 00 20 20 20 20 | numbers| ... |
|000004a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000004b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000004c0| 20 20 20 20 11 32 6e 20 | 20 20 6e 2d 31 20 20 20 | .2n | n-1 |
|000004d0| 20 20 20 20 20 31 20 20 | 20 30 0d 0a 00 11 31 77 | 1 | 0....1w|
|000004e0| 69 74 68 20 11 33 61 20 | 20 11 34 3d 20 11 31 30 |ith .3a | .4= .10|
|000004f0| 2e 20 20 54 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |. The f|unction |
|00000500| 0d 0b 00 20 20 20 20 20 | 20 11 32 6e 0d 0a 00 20 |... | .2n... |
|00000510| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 6e 20 | | n |
|00000520| 20 20 20 20 20 20 20 6e | 2d 31 20 20 20 20 20 20 | n|-1 |
|00000530| 20 20 20 20 20 20 32 0d | 0b 00 20 20 20 20 20 11 | 2.|.. .|
|00000540| 33 66 28 78 29 20 3d 20 | 61 20 78 20 20 2b 20 61 |3f(x) = |a x + a|
|00000550| 20 20 20 78 20 20 20 20 | 2b 20 11 34 2a 2a 2a 20 | x |+ .4*** |
|00000560| 11 33 2b 20 61 20 78 20 | 20 2b 20 61 20 78 20 2b |.3+ a x | + a x +|
|00000570| 20 61 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 | a... | |
|00000580| 20 20 11 32 6e 20 20 20 | 20 20 20 6e 2d 31 20 20 | .2n | n-1 |
|00000590| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 | | 2 |
|000005a0| 20 20 20 31 20 20 20 20 | 20 30 0d 0a 00 0d 0b 00 | 1 | 0......|
|000005b0| 11 31 69 73 20 63 61 6c | 6c 65 64 20 61 20 12 31 |.1is cal|led a .1|
|000005c0| 70 6f 6c 79 6e 6f 6d 69 | 61 6c 20 66 75 6e 63 74 |polynomi|al funct|
|000005d0| 69 6f 6e 20 6f 66 20 11 | 33 78 20 11 31 77 69 74 |ion of .|3x .1wit|
|000005e0| 68 20 64 65 67 72 65 65 | 20 11 33 6e 11 31 12 30 |h degree| .3n.1.0|
|000005f0| 2e 0d 0a 00 0d 0a 00 54 | 68 65 20 70 6f 6c 79 6e |.......T|he polyn|
|00000600| 6f 6d 69 61 6c 20 66 75 | 6e 63 74 69 6f 6e 20 11 |omial fu|nction .|
|00000610| 33 66 28 78 29 20 3d 20 | 61 2c 20 61 20 11 34 3d |3f(x) = |a, a .4=|
|00000620| 20 11 33 30 11 31 2c 20 | 68 61 73 20 64 65 67 72 | .30.1, |has degr|
|00000630| 65 65 20 30 20 61 6e 64 | 20 69 73 20 63 61 6c 6c |ee 0 and| is call|
|00000640| 65 64 20 61 20 0d 0a 00 | 12 31 63 6f 6e 73 74 61 |ed a ...|.1consta|
|00000650| 6e 74 20 66 75 6e 63 74 | 69 6f 6e 12 30 2e 0d 0a |nt funct|ion.0...|
|00000660| 00 54 68 65 20 70 6f 6c | 79 6e 6f 6d 69 61 6c 20 |.The pol|ynomial |
|00000670| 66 75 6e 63 74 69 6f 6e | 20 11 33 66 28 78 29 20 |function| .3f(x) |
|00000680| 3d 20 61 78 20 2b 20 62 | 2c 20 61 20 11 34 3d 20 |= ax + b|, a .4= |
|00000690| 11 33 30 2c 20 11 31 68 | 61 73 20 64 65 67 72 65 |.30, .1h|as degre|
|000006a0| 65 20 31 20 61 6e 64 20 | 69 73 20 63 61 6c 6c 65 |e 1 and |is calle|
|000006b0| 64 20 61 0d 0a 00 12 31 | 6c 69 6e 65 61 72 20 66 |d a....1|linear f|
|000006c0| 75 6e 63 74 69 6f 6e 12 | 30 2e 0d 0a 00 46 72 6f |unction.|0....Fro|
|000006d0| 6d 20 6f 75 72 20 73 74 | 75 64 69 65 73 20 73 6f |m our st|udies so|
|000006e0| 20 66 61 72 2c 20 77 65 | 20 6b 6e 6f 77 20 74 68 | far, we| know th|
|000006f0| 61 74 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |at the g|raph of |
|00000700| 61 20 63 6f 6e 73 74 61 | 6e 74 20 66 75 6e 63 74 |a consta|nt funct|
|00000710| 69 6f 6e 20 69 73 20 61 | 0d 0a 00 68 6f 72 69 7a |ion is a|...horiz|
|00000720| 6f 6e 74 61 6c 20 6c 69 | 6e 65 20 61 6e 64 20 74 |ontal li|ne and t|
|00000730| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|00000740| 6c 69 6e 65 61 72 20 66 | 75 6e 63 74 69 6f 6e 20 |linear f|unction |
|00000750| 11 33 66 28 78 29 20 3d | 20 61 78 20 2b 20 62 20 |.3f(x) =| ax + b |
|00000760| 11 31 69 73 20 61 20 6c | 69 6e 65 0d 0a 00 77 68 |.1is a l|ine...wh|
|00000770| 6f 73 65 20 73 6c 6f 70 | 65 20 69 73 20 11 33 61 |ose slop|e is .3a|
|00000780| 20 11 31 61 6e 64 20 77 | 68 6f 73 65 20 11 33 79 | .1and w|hose .3y|
|00000790| 11 31 2d 69 6e 74 65 72 | 63 65 70 74 20 69 73 20 |.1-inter|cept is |
|000007a0| 28 30 2c 20 11 33 62 11 | 31 29 2e 0d 0a 00 53 65 |(0, .3b.|1)....Se|
|000007b0| 63 74 69 6f 6e 20 33 2e | 31 20 20 51 75 61 64 72 |ction 3.|1 Quadr|
|000007c0| 61 74 69 63 20 46 75 6e | 63 74 69 6f 6e 73 0d 0b |atic Fun|ctions..|
|000007d0| 00 4c 65 74 20 11 33 61 | 2c 20 62 2c 20 11 31 61 |.Let .3a|, b, .1a|
|000007e0| 6e 64 20 11 33 63 20 11 | 31 62 65 20 72 65 61 6c |nd .3c .|1be real|
|000007f0| 20 6e 75 6d 62 65 72 73 | 20 77 69 74 68 20 11 33 | numbers| with .3|
|00000800| 61 20 11 34 3d 20 11 31 | 30 2e 20 20 54 68 65 20 |a .4= .1|0. The |
|00000810| 66 75 6e 63 74 69 6f 6e | 20 6f 66 20 11 33 78 20 |function| of .3x |
|00000820| 11 31 67 69 76 65 6e 20 | 62 79 20 0d 0a 00 20 20 |.1given |by ... |
|00000830| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|00000840| 0b 00 20 20 20 20 20 11 | 33 66 28 78 29 20 3d 20 |.. .|3f(x) = |
|00000850| 61 78 20 20 2b 20 62 78 | 20 2b 20 63 0d 0a 00 0d |ax + bx| + c....|
|00000860| 0b 00 11 31 69 73 20 63 | 61 6c 6c 65 64 20 61 20 |...1is c|alled a |
|00000870| 12 31 71 75 61 64 72 61 | 74 69 63 20 66 75 6e 63 |.1quadra|tic func|
|00000880| 74 69 6f 6e 12 30 2e 20 | 20 54 68 65 20 67 72 61 |tion.0. | The gra|
|00000890| 70 68 20 6f 66 20 61 20 | 71 75 61 64 72 61 74 69 |ph of a |quadrati|
|000008a0| 63 20 66 75 6e 63 74 69 | 6f 6e 20 69 73 20 63 61 |c functi|on is ca|
|000008b0| 6c 6c 65 64 20 0d 0a 00 | 61 20 12 31 70 61 72 61 |lled ...|a .1para|
|000008c0| 62 6f 6c 61 12 30 2e 0d | 0a 00 53 65 63 74 69 6f |bola.0..|..Sectio|
|000008d0| 6e 20 33 2e 31 20 20 51 | 75 61 64 72 61 74 69 63 |n 3.1 Q|uadratic|
|000008e0| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0b 00 41 6c 6c | Functio|ns...All|
|000008f0| 20 70 61 72 61 62 6f 6c | 61 73 20 61 72 65 20 73 | parabol|as are s|
|00000900| 79 6d 6d 65 74 72 69 63 | 20 77 69 74 68 20 72 65 |ymmetric| with re|
|00000910| 73 70 65 63 74 20 74 6f | 20 61 20 6c 69 6e 65 20 |spect to| a line |
|00000920| 63 61 6c 6c 65 64 20 74 | 68 65 20 12 31 61 78 69 |called t|he .1axi|
|00000930| 73 20 6f 66 20 0d 0a 00 | 73 79 6d 6d 65 74 72 79 |s of ...|symmetry|
|00000940| 12 30 2c 20 6f 72 20 73 | 69 6d 70 6c 79 20 74 68 |.0, or s|imply th|
|00000950| 65 20 12 31 61 78 69 73 | 12 30 20 6f 66 20 74 68 |e .1axis|.0 of th|
|00000960| 65 20 70 61 72 61 62 6f | 6c 61 2e 20 20 54 68 65 |e parabo|la. The|
|00000970| 20 70 6f 69 6e 74 20 77 | 68 65 72 65 20 74 68 65 | point w|here the|
|00000980| 20 0d 0a 00 61 78 69 73 | 20 69 6e 74 65 72 73 65 | ...axis| interse|
|00000990| 63 74 73 20 74 68 65 20 | 70 61 72 61 62 6f 6c 61 |cts the |parabola|
|000009a0| 20 69 73 20 63 61 6c 6c | 65 64 20 74 68 65 20 12 | is call|ed the .|
|000009b0| 31 76 65 72 74 65 78 12 | 30 20 6f 66 20 74 68 65 |1vertex.|0 of the|
|000009c0| 20 70 61 72 61 62 6f 6c | 61 2e 20 20 49 66 20 11 | parabol|a. If .|
|000009d0| 33 61 20 11 31 3e 20 30 | 2c 20 0d 0a 00 74 68 65 |3a .1> 0|, ...the|
|000009e0| 6e 20 74 68 65 20 67 72 | 61 70 68 20 69 73 20 61 |n the gr|aph is a|
|000009f0| 20 70 61 72 61 62 6f 6c | 61 20 74 68 61 74 20 6f | parabol|a that o|
|00000a00| 70 65 6e 73 20 75 70 77 | 61 72 64 20 61 6e 64 20 |pens upw|ard and |
|00000a10| 74 68 65 20 76 65 72 74 | 65 78 20 69 73 20 74 68 |the vert|ex is th|
|00000a20| 65 20 11 33 6d 69 6e 69 | 6d 75 6d 20 0d 0a 00 11 |e .3mini|mum ....|
|00000a30| 31 70 6f 69 6e 74 20 6f | 6e 20 74 68 65 20 67 72 |1point o|n the gr|
|00000a40| 61 70 68 2e 20 20 53 69 | 6d 69 6c 61 72 6c 79 2c |aph. Si|milarly,|
|00000a50| 20 69 66 20 11 33 61 20 | 11 31 3c 20 30 2c 20 74 | if .3a |.1< 0, t|
|00000a60| 68 65 20 67 72 61 70 68 | 20 69 73 20 61 20 70 61 |he graph| is a pa|
|00000a70| 72 61 62 6f 6c 61 20 74 | 68 61 74 20 6f 70 65 6e |rabola t|hat open|
|00000a80| 73 20 0d 0a 00 64 6f 77 | 6e 77 61 72 64 20 61 6e |s ...dow|nward an|
|00000a90| 64 20 74 68 65 20 76 65 | 72 74 65 78 20 69 73 20 |d the ve|rtex is |
|00000aa0| 74 68 65 20 11 33 6d 61 | 78 69 6d 75 6d 20 11 31 |the .3ma|ximum .1|
|00000ab0| 70 6f 69 6e 74 20 6f 6e | 20 74 68 65 20 67 72 61 |point on| the gra|
|00000ac0| 70 68 2e 20 0d 0a 00 0d | 0a 00 20 20 20 20 20 20 |ph. ....|.. |
|00000ad0| 20 20 20 20 14 74 34 2d | 31 2d 33 61 2e 6d 14 31 | .t4-|1-3a.m.1|
|00000ae0| 30 14 31 34 14 32 35 14 | 31 30 14 20 20 20 14 74 |0.14.25.|10. .t|
|00000af0| 34 2d 31 2d 33 62 2e 6d | 14 34 34 14 31 34 14 32 |4-1-3b.m|.44.14.2|
|00000b00| 35 14 31 30 14 0d 0a 00 | 0d 0a 00 0d 0a 00 0d 0a |5.10....|........|
|00000b10| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |........|........|
|00000b20| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000b30| 20 20 20 11 32 32 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00000b40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b50| 20 20 20 20 20 20 20 32 | 0d 0b 00 20 20 20 20 20 | 2|... |
|00000b60| 20 20 11 33 66 28 78 29 | 20 3d 20 61 78 20 20 2b | .3f(x)| = ax +|
|00000b70| 20 62 78 20 2b 20 63 2c | 20 61 20 3e 20 30 20 20 | bx + c,| a > 0 |
|00000b80| 20 20 20 20 20 20 66 28 | 78 29 20 3d 20 61 78 20 | f(|x) = ax |
|00000b90| 20 2b 20 62 78 20 2b 20 | 63 2c 20 61 20 3c 20 11 | + bx + |c, a < .|
|00000ba0| 31 30 0d 0a 00 53 65 63 | 74 69 6f 6e 20 33 2e 31 |10...Sec|tion 3.1|
|00000bb0| 20 20 51 75 61 64 72 61 | 74 69 63 20 46 75 6e 63 | Quadra|tic Func|
|00000bc0| 74 69 6f 6e 73 0d 0b 00 | 54 68 65 20 71 75 61 64 |tions...|The quad|
|00000bd0| 72 61 74 69 63 20 66 75 | 6e 63 74 69 6f 6e 20 0d |ratic fu|nction .|
|00000be0| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000bf0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|00000c00| 20 11 33 66 28 78 29 20 | 3d 20 61 28 78 20 2d 20 | .3f(x) |= a(x - |
|00000c10| 68 29 20 20 2b 20 6b 2c | 20 20 61 20 11 34 3d 20 |h) + k,| a .4= |
|00000c20| 11 33 30 0d 0a 00 0d 0b | 00 11 31 69 73 20 73 61 |.30.....|..1is sa|
|00000c30| 69 64 20 74 6f 20 62 65 | 20 69 6e 20 12 31 73 74 |id to be| in .1st|
|00000c40| 61 6e 64 61 72 64 20 66 | 6f 72 6d 12 30 2e 0d 0a |andard f|orm.0...|
|00000c50| 00 0d 0b 00 54 68 65 20 | 67 72 61 70 68 20 6f 66 |....The |graph of|
|00000c60| 20 11 33 66 20 11 31 69 | 73 20 61 20 70 61 72 61 | .3f .1i|s a para|
|00000c70| 62 6f 6c 61 20 77 68 6f | 73 65 20 61 78 69 73 20 |bola who|se axis |
|00000c80| 69 73 20 74 68 65 20 76 | 65 72 74 69 63 61 6c 20 |is the v|ertical |
|00000c90| 6c 69 6e 65 20 11 33 78 | 20 3d 20 68 20 11 31 61 |line .3x| = h .1a|
|00000ca0| 6e 64 20 77 68 6f 73 65 | 0d 0a 00 76 65 72 74 65 |nd whose|...verte|
|00000cb0| 78 20 69 73 20 74 68 65 | 20 70 6f 69 6e 74 20 11 |x is the| point .|
|00000cc0| 33 28 68 2c 20 6b 29 11 | 31 2e 0d 0a 00 0d 0b 00 |3(h, k).|1.......|
|00000cd0| 49 66 20 11 33 61 20 11 | 31 3e 20 30 2c 20 74 68 |If .3a .|1> 0, th|
|00000ce0| 65 20 70 61 72 61 62 6f | 6c 61 20 6f 70 65 6e 73 |e parabo|la opens|
|00000cf0| 20 75 70 77 61 72 64 20 | 61 6e 64 20 69 66 20 11 | upward |and if .|
|00000d00| 33 61 20 11 31 3c 20 30 | 2c 20 74 68 65 20 70 61 |3a .1< 0|, the pa|
|00000d10| 72 61 62 6f 6c 61 20 6f | 70 65 6e 73 20 64 6f 77 |rabola o|pens dow|
|00000d20| 6e 77 61 72 64 2e 0d 0a | 00 53 65 63 74 69 6f 6e |nward...|.Section|
|00000d30| 20 33 2e 31 20 20 51 75 | 61 64 72 61 74 69 63 20 | 3.1 Qu|adratic |
|00000d40| 46 75 6e 63 74 69 6f 6e | 73 0d 0b 00 4d 61 6e 79 |Function|s...Many|
|00000d50| 20 61 70 70 6c 69 63 61 | 74 69 6f 6e 73 20 69 6e | applica|tions in|
|00000d60| 76 6f 6c 76 65 20 66 69 | 6e 64 69 6e 67 20 74 68 |volve fi|nding th|
|00000d70| 65 20 12 31 6d 61 78 69 | 6d 75 6d 20 6f 72 20 6d |e .1maxi|mum or m|
|00000d80| 69 6e 69 6d 75 6d 20 76 | 61 6c 75 65 20 6f 66 20 |inimum v|alue of |
|00000d90| 74 68 65 20 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |the ... | |
|00000da0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000db0| 20 20 20 11 32 12 30 32 | 12 31 0d 0b 00 11 31 71 | .2.02|.1....1q|
|00000dc0| 75 61 64 72 61 74 69 63 | 20 66 75 6e 63 74 69 6f |uadratic| functio|
|00000dd0| 6e 12 30 20 11 33 66 28 | 78 29 20 3d 20 61 78 20 |n.0 .3f(|x) = ax |
|00000de0| 20 2b 20 62 78 20 2b 20 | 63 2c 20 61 20 11 34 3d | + bx + |c, a .4=|
|00000df0| 20 11 31 30 2e 20 20 42 | 79 20 63 6f 6d 70 6c 65 | .10. B|y comple|
|00000e00| 74 69 6e 67 20 74 68 65 | 20 73 71 75 61 72 65 2c |ting the| square,|
|00000e10| 0d 0a 00 0d 0b 00 77 65 | 20 63 61 6e 20 77 72 69 |......we| can wri|
|00000e20| 74 65 20 11 33 66 28 78 | 29 20 11 31 69 6e 20 74 |te .3f(x|) .1in t|
|00000e30| 68 65 20 73 74 61 6e 64 | 61 72 64 20 66 6f 72 6d |he stand|ard form|
|00000e40| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000e50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 28 | | .4(|
|00000e60| 20 20 20 20 20 20 29 11 | 32 32 20 20 11 34 28 20 | ).|22 .4( |
|00000e70| 20 20 20 20 11 32 32 11 | 34 29 0d 0b 00 20 20 20 | .22.|4)... |
|00000e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e90| 20 20 20 20 20 20 20 21 | 20 20 20 20 20 11 33 62 | !| .3b|
|00000ea0| 11 34 21 20 20 20 21 20 | 20 20 20 11 33 62 20 11 |.4! ! | .3b .|
|00000eb0| 34 21 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |4!... | |
|00000ec0| 20 20 20 20 20 20 20 11 | 33 66 28 78 29 20 3d 20 | .|3f(x) = |
|00000ed0| 61 11 34 21 11 33 78 20 | 2b 20 11 34 32 32 21 20 |a.4!.3x |+ .422! |
|00000ee0| 11 33 2b 20 11 34 21 11 | 33 63 20 2d 20 11 34 32 |.3+ .4!.|3c - .42|
|00000ef0| 32 21 11 33 2e 0d 0b 00 | 20 20 20 20 20 20 20 20 |2!.3....| |
|00000f00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f10| 20 20 11 34 21 20 20 20 | 20 11 33 32 61 11 34 21 | .4! | .32a.4!|
|00000f20| 20 20 20 21 20 20 20 20 | 11 33 34 61 11 34 21 0d | ! |.34a.4!.|
|00000f30| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000f40| 20 20 20 20 20 20 20 20 | 20 20 20 20 39 20 20 20 | | 9 |
|00000f50| 20 20 20 30 20 20 20 39 | 20 20 20 20 20 20 30 0d | 0 9| 0.|
|00000f60| 0a 00 20 20 20 20 20 20 | 28 20 20 20 20 20 20 20 |.. |( |
|00000f70| 20 20 20 11 32 32 11 34 | 29 20 20 20 20 20 20 20 | .22.4|) |
|00000f80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f90| 20 20 20 20 20 20 20 20 | 20 20 28 20 20 20 29 0d | | ( ).|
|00000fa0| 0b 00 20 20 20 20 20 20 | 21 20 20 11 33 62 20 20 |.. |! .3b |
|00000fb0| 20 20 20 20 62 20 11 34 | 21 20 20 20 20 20 20 20 | b .4|! |
|00000fc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000fd0| 20 20 20 20 20 20 20 20 | 20 20 21 20 20 11 33 62 | | ! .3b|
|00000fe0| 11 34 21 0d 0b 00 11 31 | 53 69 6e 63 65 20 11 34 |.4!....1|Since .4|
|00000ff0| 21 11 31 2d 11 34 32 32 | 11 31 2c 20 11 33 63 20 |!.1-.422|.1, .3c |
|00001000| 2d 20 11 34 32 32 21 20 | 11 31 69 73 20 74 68 65 |- .422! |.1is the|
|00001010| 20 76 65 72 74 65 78 20 | 6f 66 20 74 68 65 20 70 | vertex |of the p|
|00001020| 61 72 61 62 6f 6c 61 2c | 20 11 33 66 11 34 21 11 |arabola,| .3f.4!.|
|00001030| 31 2d 11 34 32 32 21 20 | 11 31 69 73 20 65 69 74 |1-.422! |.1is eit|
|00001040| 68 65 72 20 61 20 6d 69 | 6e 69 6d 75 6d 0d 0b 00 |her a mi|nimum...|
|00001050| 20 20 20 20 20 20 11 34 | 21 20 11 33 32 61 20 20 | .4|! .32a |
|00001060| 20 20 20 20 34 61 11 34 | 21 20 20 20 20 20 20 20 | 4a.4|! |
|00001070| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001080| 20 20 20 20 20 20 20 20 | 20 20 21 20 11 33 32 61 | | ! .32a|
|00001090| 11 34 21 0d 0b 00 20 20 | 20 20 20 20 39 20 20 20 |.4!... | 9 |
|000010a0| 20 20 20 20 20 20 20 20 | 30 20 20 20 20 20 20 20 | |0 |
|000010b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010c0| 20 20 20 20 20 20 20 20 | 20 20 39 20 20 20 30 0d | | 9 0.|
|000010d0| 0b 00 11 31 6f 72 20 61 | 20 6d 61 78 69 6d 75 6d |...1or a| maximum|
|000010e0| 20 76 61 6c 75 65 20 6f | 66 20 74 68 65 20 66 75 | value o|f the fu|
|000010f0| 6e 63 74 69 6f 6e 2e 0d | 0a 00 20 20 20 20 20 20 |nction..|.. |
|00001100| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001110| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001120| 20 20 20 20 20 20 20 20 | 11 34 28 20 20 20 29 0d | |.4( ).|
|00001130| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001140| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001150| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001160| 21 20 20 11 33 62 11 34 | 21 0d 0b 00 11 31 49 66 |! .3b.4|!....1If|
|00001170| 20 11 33 61 20 11 31 3e | 20 30 2c 20 74 68 65 6e | .3a .1>| 0, then|
|00001180| 20 74 68 65 20 70 61 72 | 61 62 6f 6c 61 20 6f 70 | the par|abola op|
|00001190| 65 6e 73 20 75 70 77 61 | 72 64 20 61 6e 64 20 11 |ens upwa|rd and .|
|000011a0| 33 66 11 34 21 11 31 2d | 11 34 32 32 21 20 11 31 |3f.4!.1-|.422! .1|
|000011b0| 69 73 20 74 68 65 20 6d | 69 6e 69 6d 75 6d 20 76 |is the m|inimum v|
|000011c0| 61 6c 75 65 20 6f 66 0d | 0b 00 20 20 20 20 20 20 |alue of.|.. |
|000011d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011f0| 20 20 20 20 20 20 20 20 | 11 34 21 20 11 33 32 61 | |.4! .32a|
|00001200| 11 34 21 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |.4!... | |
|00001210| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001230| 20 20 20 20 39 20 20 20 | 30 0d 0b 00 11 31 74 68 | 9 |0....1th|
|00001240| 65 20 66 75 6e 63 74 69 | 6f 6e 2e 0d 0a 00 20 20 |e functi|on.... |
|00001250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001260| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001270| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001280| 20 20 20 20 20 20 20 20 | 11 34 28 20 20 20 29 0d | |.4( ).|
|00001290| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|000012a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 21 20 20 11 | | ! .|
|000012d0| 33 62 11 34 21 0d 0b 00 | 11 31 4c 69 6b 65 77 69 |3b.4!...|.1Likewi|
|000012e0| 73 65 2c 20 69 66 20 11 | 33 61 20 11 31 3c 20 30 |se, if .|3a .1< 0|
|000012f0| 2c 20 74 68 65 6e 20 74 | 68 65 20 70 61 72 61 62 |, then t|he parab|
|00001300| 6f 6c 61 20 6f 70 65 6e | 73 20 64 6f 77 6e 77 61 |ola open|s downwa|
|00001310| 72 64 20 61 6e 64 20 11 | 33 66 11 34 21 11 31 2d |rd and .|3f.4!.1-|
|00001320| 11 34 32 32 21 20 11 31 | 69 73 20 74 68 65 0d 0b |.422! .1|is the..|
|00001330| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001350| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001360| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 21 20 11 | | .4! .|
|00001370| 33 32 61 11 34 21 0d 0b | 00 20 20 20 20 20 20 20 |32a.4!..|. |
|00001380| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013b0| 20 20 20 39 20 20 20 30 | 0d 0b 00 11 31 6d 61 78 | 9 0|....1max|
|000013c0| 69 6d 75 6d 20 76 61 6c | 75 65 20 6f 66 20 74 68 |imum val|ue of th|
|000013d0| 65 20 66 75 6e 63 74 69 | 6f 6e 2e 0d 0a 00 0d 0b |e functi|on......|
|000013e0| 00 38 00 00 00 30 02 00 | 00 4d 28 00 00 10 00 00 |.8...0..|.M(.....|
|000013f0| 00 00 00 00 00 63 68 61 | 70 33 00 88 02 00 00 99 |.....cha|p3......|
|00001400| 01 00 00 4d 20 00 00 68 | 02 00 00 00 00 00 00 73 |...M ..h|.......s|
|00001410| 33 2d 31 00 41 04 00 00 | 6d 03 00 00 4d 20 00 00 |3-1.A...|m...M ..|
|00001420| 21 04 00 00 00 00 00 00 | 73 33 2d 31 2d 31 00 ce |!.......|s3-1-1..|
|00001430| 07 00 00 fc 00 00 00 4d | 20 00 00 ae 07 00 00 00 |.......M| .......|
|00001440| 00 00 00 73 33 2d 31 2d | 32 00 ea 08 00 00 bb 02 |...s3-1-|2.......|
|00001450| 00 00 4d 20 00 00 ca 08 | 00 00 00 00 00 00 73 33 |..M ....|......s3|
|00001460| 2d 31 2d 33 00 c5 0b 00 | 00 64 01 00 00 4d 20 00 |-1-3....|.d...M .|
|00001470| 00 a5 0b 00 00 00 00 00 | 00 73 33 2d 31 2d 34 00 |........|.s3-1-4.|
|00001480| 49 0d 00 00 98 06 00 00 | 4d 20 00 00 29 0d 00 00 |I.......|M ..)...|
|00001490| 00 00 00 00 73 33 2d 31 | 2d 35 00 |....s3-1|-5. |
+--------+-------------------------+-------------------------+--------+--------+